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Critical dynamics in clusters of noble gas atoms
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Abstract. The multi-fragmentation dynamics of noble gas atomic clusters is considered for different sta-
tistically distributed deposited energies. The conditions giving rise to the development of criticality in the
cluster evolution are revealed from an analysis of the signals in the fragment mass distribution. The time
dependence of the observables related to critical exponents is studied. It is demonstrated that in a certain
regime the cluster exhibits a behavior which can be identified as the precursor of a second-order liquid-gas
phase transition.

PACS. 05.70.Fh Phase transitions: general studies – 05.70.Jk Critical point phenomena –
64.70.-p Specific phase transitions

Significant effort has been devoted in recent years to the
study of critical behavior (e.g. a phase transition in infinite
matter) in finite systems [1]. In the vicinity of critical con-
ditions, the systems experience fluctuations at all scales;
as a consequence, the relevant phenomena display univer-
sal features, being insensitive to the details of finite range
forces and, therefore, important for the understanding of
general characteristics of various objects.

In recent papers [2,3] we have performed an extensive
study of the asymptotic fragmentation pattern of hot rare-
atom clusters. By employing the analytical tools based
on the analysis of statistical, correlation and fluctuation
properties of fragment mass distributions we found strong
evidence for a finite-size precursor of a second-order liquid-
gas phase transition. However, in order to identify the de-
tected behavior with the phase features of a finite system
an analysis of the time evolution of criticality development
is required [4]. Therefore, in this contribution we consider
the time evolution of the observables which are related
to the critical exponents, as an important aspect of dy-
namical effects. In addition, we also explore the criticality
signal which is associated with the variance of the size
of the biggest fragment. This quantity makes use of the
finiteness of atomic clusters and cannot be employed in
the analysis of an infinite system.

In the present study we use the dynamical model which
has been described in reference [2]. We briefly recall that
the cluster evolution is treated within Classical Molecular
Dynamics. The atoms of the cluster move classically un-
der the influence of a modified two-body Lennard-Jones
potential; its parameters correspond to those of the argon
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Fig. 1. The average flow velocity as a function of density in
the expansion of an Ar300 cluster. For each Tin, the system
starts at the highest density and proceeds along the respective
curves to lower density.

liquid, {ε, r0,m} = {119 K, 3.83 Å, 40 amu}. All observ-
ables are measured in these units.

The cluster is initialized in a local potential energy
minimum by employing the frictional cooling method [5].
Using Metropolis sampling [6] it is then excited to a
temperature Tin (giving a Maxwellian velocity distribu-
tion to the atoms), and the total energy of the cluster
is kept fixed. In the initial stage the cluster dynamics
display small fluctuations [2] implying that correlations
perturbatively affect the system evolution which is based
on a mean-field picture (cf. [7]). Such a picture leads
to a time-reversible isentropic expansion process which
is conveniently described in terms of the collective flow
(cf. [8]). Figure 1 shows the density dependence of the
average collective flow velocity of the biggest fragment,
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defined as

vfl = A−1
cp

∑
cp

vi,cmni,cm;

ni,cm = ri,cm/ri,cm, (1)

where the index “i, cm” indicates that the respective quan-
tities are related to the center-of-mass of the fragment, and
“cp” denotes that the sum is running over only those 50%
(Acp) of fragment atoms which belong to the central re-
gion of the fragment. The flow velocity sharply increases
and changes only weakly (during the isentropic regime of
cluster evolution) until the cluster is decomposed into frag-
ments of various masses in the second (dynamical) regime
of its evolution [2]. This behavior is typical; we find the
same features for the evolution of Ar100 and Ar500 clusters
as well.

Figure 2 presents a few examples for the time evolu-
tion of the inclusive fragment mass distributions, averaged
over at least 1000 cluster fragmentation events. At low
temperatures the mass distribution remains “U” shaped
until it stabilizes at asymptotically large times. At high
temperatures the time evolution shows within a short time
interval a dramatic change from a “U” shaped distribution
to a monotonic decrease. According to Fisher’s droplet
model [9], such an average mass distribution can provide
a first clue as to the occurrence of a critical behavior. For
instance, in the case of overcritical evolution (i.e. vapor-
like behavior at temperatures beyond the critical temper-
ature) the inclusive mass distribution can within the ther-
modynamic limit be written in the form [2,9]

N(A) ∝ A−τ exp
( ∆µ
kBT

A
)

; (2)

where ∆µ = µg − µl represents the difference of the gas
and the liquid chemical potentials, respectively, and τ is
related to some critical exponents through scaling laws
of critical phenomena; the respective term accounts for a
reduction of the available phase-space volume of surface
fluctuations because the fragment surfaces are closed on
themselves [2,9]. Since at the critical point the difference
of the chemical potentials vanishes, the fragment mass dis-
tribution formed at the critical conditions follows a power
law. This is a consequence of the strong large-scale density
fluctuations which favor the formation of fragments with
fairly wide mass spectra. Such a behavior, in conjunction
with the value of the exponent τ , suggests a signature
of critical evolution, i.e. the precursor of a second-order
liquid-gas phase transition. Indeed, from Figure 2 one sees
that at the initial temperature Tin ≈ 4ε the asymptotic
inclusive mass distribution is very close to a power law,
with τ ≈ 2.23, which is the value for condensation near
the critical point as expected from Fisher’s droplet model
[2,9].

To further analyse the time development of the frag-
mentation process and to identify a possible critical
behavior we use the reduced variance

γ2 =
M2M0

M2
1

, (3)

(a) Tin = 3�

(b) Tin = 4�

(c) Tin = 7�

Fig. 2. Mass distributions at different time steps during the
expansion of an Ar100 cluster with initial temperatures Tin/ε =
3 (a), 4 (b) and 7 (c). The dashed lines give a power law yield
N ∼ A−τ with τ = 2.23.

where the conditional moments M (j)
k are defined through

the fragment mass distribution n(j)(A) for the jth event
as [10]

M
(j)
k =

∑
A

Akn(j)(A). (4)

It is an important feature of the quantity γ2 that it dis-
plays a peak at conditions corresponding to the criti-
cal evolution of the system [2,10]. Using equation (2)
and replacing the summation in equation (4) by an in-
tegration, the moments near the critical point in infinite
matter can be estimated as Mk ∝ |∆µ|−(1+k−τ). By as-
suming that at distance δ from the critical point the differ-
ence between the chemical potentials of the liquid phase
and the gas phase vanishes as ∆µ = δν , one recovers
Campi’s formula [10] for the moments at the critical point,
Mk ∝ |δ|−ν(1+k−τ). Since τ is limited [2,9] between 2
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Fig. 3. Reduced variance γ2 versus initial temperature, Tin,
and time for the expansion of Ar300.

and 2.5, the zeroth and first moments are finite, while the
higher moments diverge as the infinite system approaches
the critical point.

Although in a finite system all moments Mk remain
finite, they can nevertheless keep some qualitative features
(if any) of critical behavior in an infinite system [2]. To
trace such a criticality signal we calculate the averaged
reduced variance

〈γ2〉(Tin, t) =
1

Nev(Tin)

∑
j

γ
(j)
2 (t), (5)

where γ(j)
2 (t) is determined for each event j of Nev(Tin)

events with the initial temperature Tin. From Figure 3 one
sees that at low initial temperatures (liquid-like events
at Tin < 4ε) the reduced variance γ2 grows monotoni-
cally with time and saturates at large times. In contrast,
for high initial temperatures (vapor-like events) we ob-
serve a pronounced non-monotonic behavior of γ2 as a
function of time, displaying a maximum in the dynamical
regime of the system evolution. This property indicates
that the fragments which are produced during the dynam-
ical regime still contain a considerable amount of energy
and are cooled by evaporation of mostly monomers (com-
pare the time evolution of the mass distribution in Fig. 2).
Note that at transitional temperatures (Tin between 3.5ε
and 4ε) the reduced variance γ2 peaks at asymptotic times
as well as in the dynamical regime; this further corrobo-
rates the assertion of critical behavior at these tempera-
tures.

It has been suggested [11] that a possible signal of
critical behavior could be found in the size fluctuations
of the biggest fragment. Supposedly, cluster size distribu-
tions for critical events show a maximum of fluctuations
since the entire system becomes strongly correlated. As we
have seen above, the maximum of the reduced variance
〈γ2〉 corresponds to those events which are transitional
between the liquid-like and vapor-like configurations. Due
to the conservation of the number of atoms, the size of
the biggest fragment should then display large fluctua-
tions (cf. [12]) as well. Figure 4 shows the probability dis-
tribution of the mass of the biggest fragment for different

0.001

0.01

0.1

1 50 100 150 200 250 300

P
ro

ba
bi

lit
y

biggest fragment size

Tin= 7
4
3

Fig. 4. The probability distribution of the size of the biggest
fragment at three different initial temperatures for the frag-
menting Ar300 cluster.

Fig. 5. The average mass of the biggest fragment (a, the error-
bars display the quantity ∆Ab), the NVB (b, solid line) and
the asymptotic values of 〈γ2〉 (b, dashed line) as a function of
the initial temperature Tin for the fragmentation of Ar300.

initial temperatures. We observe that the width of the dis-
tribution attains its maximum at transition temperatures,
Tin ≈ 4ε. At these temperatures it is interesting to note
the pronounced fluctuations in the probability distribu-
tion which are apparently not of statistical origin.

For the following, we thus consider the normalized vari-
ance of the size of the biggest fragment, NVB,

γNVB =
∆2
Ab

〈Ab〉
,

∆2
Ab

= 〈A2
b〉 − 〈Ab〉2, (6)

as a signal of criticality. Here again the brackets 〈 · 〉 indi-
cate ensemble-averaging as in equation (5). Figure 5 dis-
plays the initial temperature dependence of the average
mass of the biggest fragment (Fig. 5a) and the reduced
variance 〈γ2〉 (Fig. 5b, dashed line) together with the val-
ues of NVB (Fig. 5b, solid line) taken at asymptotically
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large times. One sees that the NVB signal shows a max-
imum located at Tin between 3.5ε and 4ε which is quite
close to the value obtained from the analysis of the other
signals [2].

In summary, we have considered the time trace of rare-
atom cluster multi-fragmentation depending on the value
of statistically distributed deposited energy (initial tem-
perature). Conditions can be identified which correspond
to the occurrence of critical behavior; the time evolu-
tion of characteristic observables in the dynamical regime
confirms the vicinity of critical conditions. Finally, the
normalized variance of the biggest fragment size distribu-
tion shows almost the same features as the reduced vari-
ance γ2 of the fragment mass distribution, and, therefore,
can be employed as an additional analytical tool for stud-
ies of critical behavior in a finite system.
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